DATA SHEET

wiring components EV-S G 3.1+N.18.120

Eurovario-System nach EN 60664-1, 500 V, 10 mm², fork Article number 09920183

Wiring materials are components for the wiring of residual current circuit-breakers, residual current operated and miniature circuit-breakers and Do switch-disconnectors in industrial, commercial and privately used electrical distribution units. They considerably reduce the installation work and are available in a wide range of versions in multiple-pole design with various conductor cross-sections. The busbars are cut to length and designed for the supply-side connection of residual current circuit-breakers (RCCBs) DFS 2 or DFS 4, miniature circuit-breakers (MCBs) and residual current operated circuit-breakers with integral overcurrent protection (RCBOs) on the bottom of the devices. The bars with furcated cable lug are available in a wide range of variants in one to four-pole design (some also with space for auxiliary switches) and provide time-saving and user-friendly processing options. Unused connections can be covered by the EV-S BS protective cover.

Features

can be used in connection with residual current circuit-breakers, miniature circuit-breakers and residual current operated circuit-breakers with integral overcurrent protection, wide range of variants, saves a lot of time during wiring

Mounting

The rails are inserted in the upper or lower terminals of the devices to be connected.

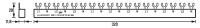
Applications

Busbars from this series are used in connection with RCCBs, MCBs and RCBOs in power supplies to residential and purpose-built buildings as well as to industrial facilities.

Notes

The EV-S G ANL (N left) or EV-S G ANR (N right) connection bars must be used when supplying power to miniature circuit-breakers from above in combination with Doepke residual current circuit-breakers.

Accessories


input terminals AS, feed-in terminal blocks ES, protective cover caps

Technical Data

Technical Data	EV-S G 3.1+N.18.120
Series	EV-S G
suitable for model range	DFS 2, DLS 6, DRCBO 3
Phase arrangement	(L1+N, L2+N, L3+N) x 3
Number of connectable devices	9
Number of Phases	3
Specification connection	fork
Rail cross-section	10 mm²
Modular dimension, rail	17.8 mm
Dielectric constant	4
Creep resistance	600
Rated voltage (AC)	500 V
Rated current (AC)	6 ₃ A
Rated short-circuit current	15 kA
Rated impulse withstand voltage	4.5 kV
	General data

Technical Data	EV-S G 3.1+N.18.120
Bar material	E-CU F ₂₅
Insulated	true
Insulating material	Ultramid® A ₃ K (or equivalent)
Colour insulating material	light grey
Height	11.8 mm
Depth	28 mm
Module widths	18
Length	320 mm
Weight	0.139 kg
Design requirements/Standards	EN 60664-1

Dimensions

Dimensional drawing Group view

Diagrams

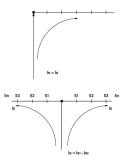


Diagram Power distribution